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1 Introduction

Semantic segmentation is the task of assigning each pixel in an image an object class. Accurately
assigning semantic labels requires precisely pinpointing the borders of objects, which requires a much
higher localization accuracy than other high-level visual recognition tasks such as image classification
or object detection. This constraint naturally suggests the use of probabilistic graphical models to
model uncertainty in predictions combined with robust and powerful deep convolutional approaches
to obtain accurate and well-localized segmentation maps.

Additionally, given the complexity of this task, it seems reasonable to require a complex method
trained on large-scale datasets with pixel-level annotations in a supervised fashion to achieve good
results. In this project, we propose to overcome this requirement by operating on surrogate localiza-
tions obtained from a trained image classification model, without the need for expensive pixel level
annotation. By enforcing simple Markovian constraints on noisy and low resolution pixel-labels, we
aim to obtain comparable performance on this task. In addition, our proposed approach for the task
also works in data-starved instances of the task at hand.

To explicitly model uncertainty for semantic segmentation, we take the task a step further and
frame the problem as one of scene understanding. Scene understanding has traditionally held an
important position in computer vision due to applications in perceiving, analyzing, and elaborating
an interpretation of a real-time dynamic scene. We restrict our modeling domains - modalities - to
that of physical scene understanding, which involves characterizing the kind and position (space)
occupied by different objects in an image. We particularly deal with three modalities - image, class
presence/absence and segmentation maps. Assuming no causal relation between the modalities, we
learn a directed probabilistic model with a continuous latent variable as a parent to all the modalities.
Since such models usually have intractable posterior distributions, we use gradient based techniques
from the stochastic variational inference literature to learn the parameters of our encoding and
decoding processes. In addition to performing joint inference over the latent variable we also support
inference conditioned on a subset of modalities - allowing us to perform semantic segmentation and
predict a distribution over possible scenes given a scene configuration. In data-starved regimes, such
a model could also be used to generate datasets by performing a random walk in the space of the
continuous latent variable.

This report is organized as follows. In Sec 2, we provide a broad overview of the supervised
segmentation task, some of the recent and popular approaches to solve it. We then focus on some
of the relevant works in context of our proposed approach and report corresponding results. Sec 3
describes the datasets and the evaluation metrics we use to elicit the performance of our proposed
approaches. In Sec 4, we introduce some of the approaches/models which serve as groundwork for
our models. We describe our proposed approaches with associated qualitative and quantitative results
in secitons 5 and 6. Finally, in Sec 7 we provide details regarding our implementation.



2 Related Work

In this section, we discuss some of the relevant work that cover semantic segmentation, involved
inference techniques in graphical models, interpretable visualizations of deep models, joint generative
probabilistic models and associated learning and inference techniques. We shall cover each of the
following in the subsequent paragraphs and share associated quantitative and qualitative results
wherever applicable.

Fully supervised semantic Segmentation. Prior to the emergence of deep learning, most popular
semantic segmentation systems relied on learning classifiers on top of hand-crafted features, often
additionally incorporating context Carreira et al. [2012] and structured prediction techniques He et al.
[2004], Krähenbühl and Koltun [2011]. In general, approaches such as TextonForest Shotton et al.
[2008] and Random forest based classifiers Shotton et al. [2011] were very popular. More recently,
popular approaches have employed deep learning, with different classes of approaches emerging
for solving the combined segmentation and classification task. One class of approaches performs
bottom-up segmentation followed by region classification via a deep convolutional neural network
(DCNN) Girshick et al. [2014]. Another class of approaches separately obtains image segmentations
and DCNN features for dense image labeling and combines them for the semantic segmentation task
Farabet et al. [2013]. Another popular set of approaches directly trains DCNN’s to provide dense
category-level pixels in a fully convolutional fashion Long et al. [2015].

Inference in Graphical Models. Conditional Random Fields (CRFs) are the most prevalent graphical
models used in the context of semantic segmentation. The key idea in most approaches is to
assume Markovian constraints on nodes positioned on pixels with a categorical distribution over
all the possible class-labels upon which we would like to perform the task of either refinement
of segmentations, or segmentation itself, via some maximum likelihood estimate. The Markovian
assumption naturally leads to the Gibbs energy formulation involving unary potentials (on nodes) and
pairwise potentials (on neighboring nodes). In general, such a structured inference problem is NP-
hard due to the sheer number of dimensions in the associated Ising model. As in Payet and Todorovic
[2010], performing MCMC inference as in over such structures without any simplifying assumptions
usually renders the problem intractable. Although tractability in relatively small non-loopy graphs
can be achieved via dynamic programming inspired techniques such as variable elimination, this
is not desirable from the perspective of semantic segmentation because of two primary reasons –
firstly, sub-sampling the actual input (∼ 10 × 10) and performing inference on that would lead to
loss of visual context in terms of structure learning to associated labels that are too noisy to result in
anything meaningful. Secondly, this still does not render the approach practical in terms of feasible
time-complexity. One major stride made towards efficient inference has been to achieve sublinear
time-complexity by performing approximate inference on such CRFs. One such approach that is
particularly relevant is that of Krähenbühl and Koltun [2011]; i.e., performing inference on such
CRFs by assuming unary potentials encoded by label classifiers and edge potentials encoded in a
linear combination of Gaussian kernels, which enables one to perform efficient inference in such
models via a mean field approximation. More details on this approach are provided in Sec.4.

Figure 1: The example above denotes the result of inference performed over a CRF for semantic segmentation via
standard MCMC (∼ 36 hours; left) Payet and Todorovic [2010] versus efficient inference by assuming pairwise
potentials as combination of gaussian kernels and performing message passing (∼ 0.2s; right) Krähenbühl and
Koltun [2011].
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Graphical Models in Semantic Segmentation. Combining the salient aspects of many of the
above approaches, Chen et al. [2016] propose combining deep convolutional neural networks with
probabilistic graphical models for this task. Specifically, they overcome the issue of the poor
localization property of higher level DCNN’s responses by adding a Conditional Random Field
(CRF) for refinement. While prior work has attempted combining the two, they have primarily
employed locally connected CRF models while Chen et al. [2016] propose a fully connected CRF,
representing each pixel as a node receiving unary potentials from the DCNN. In addition to this, the
paper makes additional modeling contributions such as using atrous convolutions to explicitly control
resolution of feature responses and increase receptive fields of pixels, and a novel spatial pyramid
pooling scheme to perform segmentation at different scales, which when combined leads to very
strong performance on a range of challenging semantic segmentation datasets including PASCAL
VOC-2012, PASCAL-Context, PASCAL-Person-Part, and Cityscapes.

Interpretable Visualizations. Generating visual support for decisions made by neural networks,
i.e., visual explanations has been a rich line of work in itself in the past couple of years. Recently,
Selvaraju et al introduced GradCAM Selvaraju et al. [2016], a technique for producing "visual
explanations" for decisions from CNN-based models. They propose to do this by computing the
gradient of the score for a particular class with respect to convolutional layer activations. This provides
an importance score of every convolutional layer neuron for a particular decision. A weighted sum
of network activations provides a rough heatmap of where the model ‘looks’ in order to predict the
class. This resulting heatmap is of a very low resolution (14 x 14) and only concentrates on the
most discriminative aspects in the image. These visual heatmaps are relevant in the context of our
project goal of semantic segmentation as these can act as noisy, pixel-level surrogate annotations
that one can utilize in a low-data regime or even in the complete absence of annotated data. Since,
these localization(s) are coarse, noisy but class-discriminative, efficient inference on CRFs (used to
refine object boundaries via node and edge potentials) is a critical component to generate semantic
segmentation predictions. In addition, these can be obtained for networks trained for classification
(for which obtaining annotations is cheap in general). Following this, we describe our approach to
combine relevant components from each of these to perform weakly supervised image segmentation
and discuss baseline results in context.

Generative Models. Advances in generative models for visual understanding in recent years can be
broadly categorized into two kinds of approaches - Generative Adversarial Networks (GANs) Goodfel-
low et al. [2014] and Variational Auto-encoders (VAEs) Kingma and Welling [2013]. We particularly
focus on approaches along the lines of VAEs. Introduced in Kingma and Welling [2013], VAEs
are directed probabilistic models with continuous latent variables (hence with intractable posteriors
over the latent space) that are learned via gradient based approaches by optimizing the variational
lower bound (Stochastic Variational Inference Hoffman et al. [2013]) on the marginal likelihood
of the observed data. From an optimization perspective, gradient propagation is usually a problem
since learning requires propagating them through a sampling procedure. Classical works in this
domain have tried to address this problem over the years via different techniques - policy gradients
or the log-derivative trick Sutton et al. [2000], the reparameterization trick Kingma and Welling
[2013], Kingma et al. [2015], Burda et al. [2015] and so on. The primary concerns while optimizing
the evidence lower bound (ELBO) in such models are the nature of gradients (biased or unbiased)
and the associated variance(s). Following the success of the Stochastic Gradient Variational Bayes
(SGVB) algorithm to optimize the ELBO several other directed graphical models have been proposed.
In the presence of multi-modal observed data some conditional and joint generative probabilistic
models that are relevant to our approach are - conditional variational auto-encoder Sohn et al. [2015],
semi-supervised generative models Kingma et al. [2014], joint generative models Suzuki et al. [2016]
and visually grounded generation Vedantam et al. [2017]. Our proposed approach builds directly on
top of the underlying principles in joint and conditional generative models. The underlying principles
with a relevant subset of work has been covered in Sec 4.

3 Dataset and Evaluation metric

In this section, we describe the datasets used for our experiments and the associated evaluation metric
on the downstream task of semantic segmentation.
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Figure 2: Example images from the 20 semantic classes in PASCAL VOC’2012

3.1 Dataset

One of the standard datasets on which semantic segmentation results are usually reported is the Pascal
Visual Object Categories (VOC) ’2012 Everingham et al. [2015], containing 20 object classes. The
dataset was collected and annotated by the computer vision community with the primary goal to
perform scene understanding in realistic scenes involving several visual object classes. Problems are
treated as fundamental supervised learning paradigms involving several unimodal and multimodal
inference tasks such as image classification, captioning, object detection and segmentation. Examples
of object classes are person, bird, cat, cow, aeroplane, chairs, etc. Depending on the task involved the
datasets provide associated coarse as well as fine-grained annotations.

Approach mIoU

Fu
ll DeepLab Chen et al. [2016] 79.7

FCN-8s Long et al. [2015] 62.2
Context_CNN_CRF Lin et al. [2016] 77.8

Se
m

i GAIN Li et al. [2018] 56.8
SEC Kolesnikov and Lampert [2016] 51.7
AE-PSL Wei et al. [2017] 55.7

Table 1: mIoU on PASCAL VOC’2012 of state of the art fully supervised and semi-supervised semantic
segmentation approaches.

The classes can be broadly divided into four top-level categories: person, animals, vehicles, and
indoor objects, each of which in turn contains subcategories to make up the 20 semantic classes.
Fig. 2 illustrates the 20 semantic categories. For our experiments, we use the train and validation
splits of VOC’2012, containing 1464 and 1449 images, respectively. Table 1 summarizes results of
some of the approaches described in 2, on PASCAL VOC’2012. We include results of both state of
the art fully-supervised and semi-supervised approaches.

3.2 Evaluation Metric

Figure 3: Illustration of the mIoU calculation

Performance is reported as mean Intersection over
Union (mIoU) between the ground truth annotated
pixels and the segmented pixels associated with indi-
vidual classes averaged across instances and classes.
Fig.3 illustrates how the metric is computed. It is ev-
ident that IoU is a count based measure, whereas the
output predictions of segmentation models are usu-
ally distributions over classes per-pixel. While eval-
uating the mIoU measure for a predicted segmenta-
tion output the reported metric is class-normalized
mean so as to accurately capture the performance of
the segmentation model instead of sub-par performance being reported as something better due to
pixel predictions being dominated by a subset of classes present as a majority in the image.
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4 Preliminaries

In this section, we cover the underlying fundamentals of some approaches which are relevant in
the context of our work. Sec 4.1, describes the dense conditional random field used to refine
segmentation predictions in our proposed approaches. Sec 4.2 describes the visualization technique
- GradCAM Selvaraju et al. [2016] - used to obtain noisy and coarse annotations in a weakly
supervised setting. Finally, Sec 4.3 covers some ground on the underlying formulation used in
Stochastic Variational Inference (SVI) particularly under the scope of VAEs.

4.1 Conditional Random Field

In this section we review the general Conditional Random Field formulation as applied to semantic
segmentation, and further highlight the approach outlined in Krähenbühl and Koltun [2011] to
perform efficient inference in dense fully-connected CRF’s.

A conditional random field is a discriminative undirected graphical model (UGM) that models the
conditional probability of a label sequence (hidden) given an observation sequence. This model does
not assume independence among the features on the observations. In the case of dense segmentation,
fully connected CRF’s with pixel-level connectivity offer strong expressivity to perform segmentation.

As briefly described in 2, Krähenbühl and Koltun [2011] introduce an efficient inference algorithm
for such dense fully-connected CRF’s. With dense pixel-level connectivity, traditional inference is
naturally impractical. Consider X as a random field defined over a set of variables X1, ..., XN . The
domain of each variable in a set of labels L = l1, l2, ..., lk. Consider also a random field I defined
over variables I1, ..., IN . I ranges over possible input images of size N and X ranges over possible
pixel-level image labelings. Ij is the color vector of pixel j and Xj is the label assigned to pixel j. In
the fully connected pairwise CRF model, G is the complete graph on X and the corresponding Gibbs
energy can be expressed as the set of all unary and pairwise cliques, with

E(X) =
∑
i

ψu(xi) +
∑
i<j

ψp(xi, xj),

The unary potentials are typically confidences from a learned classifier. The pairwise potentials can
be further simplified as a weighted sum of Gaussian kernels in a feature space as

ψp(xi, xj) = µ(xi, xj)

K∑
m=1

w(m)k(m)(fi,fj),

Here each kernel k(m)(fi,fj) is a combination of an appearance kernel and a smoothness kernel, and
vectors (fi,fj) are feature vectors for pixels i and j in a feature space. The appearance kernel tries to
enforce that nearby pixels with similar color should belong to the same class. The smoothness kernel
removes small isolated regions. Moreover, µ is a label compatibility function. The hyperparameters
are learned from data, or via grid search on a validation set.

k(fi,fj) = w(1) exp(−|pi − pj |
2

2θ2
α

− |Ii − Ij |
2

2θ2
β

) + w(2) exp(−|pi − pj |
2

2θ2
γ

).

In the above formulation, using a mean field-approximation to the conditional random field distribu-
tion helps alleviate the problem of intractable inference, as it affords the possibility of performing
message passing updates while minimizing the KL-divergence between the target and the proposal
distributions. While this still results in quadratic complexity, this message passing update can be
interpreted as a convolution of Gaussian kernels in the pixel feature space.

Q̃
(m)
i (l) =

∑
j∈ν

k(m)(fi,fj)Qj(l)−Qi(l) = [GΛ(m) ×Q(l)](fi)−Qi(l),

Here Q̃(m)
i represents the approximation to the marginal Q(m)

i , and GΛ(m) represents a Gaussian
kernel in feature space. Drawing implications from the sampling theorem, this essentially implies
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efficient function reconstruction is possible in practice from this low-pass band-limiting filter by
ignoring samples beyond 2 standard deviations, resulting in O(N) complexity in the number of
variables. The kernel parameters are then approximated by approximating the gradients for each
training image and performing L-BFGS optimization in this low-data regime.

4.2 Grad-CAM

Deep convolutional networks have been the cornerstone of visual understanding tasks in the recent
years with performances surpassing those of simpler models by a significant margin by building a
hierarchical representation of the data. However, unlike low-capacity and sample efficient model
classes such as Support Vector Machines (SVMs), deep networks suffer from the problem of in-
terpretability - the ability to characterize the reasoning behind success and failure cases from the
perspective of generalization. As such one major effort in the deep learning community has been
to develop explanation techniques or interpretable models which help us understand why the model
made a particular decision when provided with an input. Some notable works in this sub-domain
are along the lines of - explainable AI Samek et al. [2017], Grad-CAM Selvaraju et al. [2016],
understanding the utility of explanations from downstream tasks Chandrasekaran et al. [2017] and so
on. Often, implicit (or explicit) attention based works in this domain provide us a way to obtain visual
explanations for decisions made by a classifier. We particularly focus on Grad-CAM Selvaraju et al.
[2016], which is provably efficient and is a low cost mechanism to obtain per-class decisions which
we subsequently use as weak localization cues for semantic segmentation. Essentially, Selvaraju
et al. [2016] present a technique for producing “visual explanations” for decisions from a large class
of Convolutional Neural Network (CNN)-based models, making them more transparent. Using the
gradients of any target concept flowing into the final convolutional layer, a coarse localization map
highlighting the important regions in the image for predicting a particular concept is produced as a
visual explanation. Further, Grad-CAM can be combined with existing fine-grained visualizations to
create a high-resolution class-discriminative visualization which can be readily applied to a range
of CNN-model families, including tasks such as image classification, image captioning, and visual
question answering. Such visualizations lend insights into failure modes of these models while
maintaining fidelity to the underlying model. Fig. 4 demonstrates one such map for a deep classifier
trained on the ImageNet Deng et al. [2009] dataset.

Figure 4: Example Grad-CAM visualizations for existent categories, Boxer and Tiger-Cat

The underlying idea is demonstrated as follows. In order to obtain a class-discriminative localization
map, Grad-CAM LcGrad-CAM ∈ Ru×v of width u and height v for any class c (from a pre-trained
classification network), we first compute the gradient of the score for class c, yc (before a softmax
and this unnormalized scores), with respect to feature maps activations Ak of a convolutional layer in
the deep network.These gradients are subsequently global-average-pooled to obtain the an empirical
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point estimates of the neuron importance weights αck associated with the class c:

αck =

global average pooling︷ ︸︸ ︷
1

Z

∑
i

∑
j

∂yc

∂Akij︸ ︷︷ ︸
gradients via backprop

(1)

This weight αck represents a partial linearization - a first order Taylor approximation - of the network
downstream from Ak, and captures the ‘importance’ of feature map at channel k for a target class
c. A weighted combination of forward activation maps by the neuron importance weights provides
us a loose approximation of the expected saliency map which is then refined by a ReLU operation
(f(x) = max(0, x)) to obtain,

LcGrad-CAM = ReLU

(∑
k

αckA
k

)
︸ ︷︷ ︸
linear combination

∝ ReLU(Epθ(α)[A
k]) (2)

Notice that this results in a coarse heatmap of the same size as the convolutional feature maps.

4.3 Probabilistic Generative Models

In this subsection, we will cover some ground in terms of the formulation associated with a variational
autoencoder and discuss some existing extensions in the context of the same.

Figure 5: The general architectural pipeline used to implement a vanilla variational auto-encoder. Notice the
reparameterization trick on the right half.

Variational Auto-encoder. Consider some dataset X = {xi}N1 of i.i.d. samples of some
continuous or discrete variable x. The primary assumption involved here is that the data is
generated by some random process involving an unobserved continuous random variable z.

Figure 6: The generative process of a
VAE depicted as a plate diagram. The
solid arrows represent the generative pro-
cesses while the dotted ones represent
the inference networks.

Data is generated in an i.i.d. fashion from this (hypotheti-
cal) process (see Fig. 6) in hierarchical manner by first sam-
pling the latent variable (z ∼ p(z)) and then sampling the
datapoint (x ∼ pβ(x|z)) from the conditional distribution.
Since the true posterior under this generative process is in-
tractable due to the presence of the marginal likelihood term
(p(x) =

∫
p(z)pβ(x|z)dz) efficient MLE or MAP estimate of

the parameters of the generative process is a problem. Stochas-
tic Variational Inference frames this problem under the purview
of optimization. Essentially, we approximate the true posterior
by a variational family qθ(z|x) and optimize a lower bound
(Evidence Lower Bound) on the marginal likelihood of the
data. This is summarized as follows:

log p(xi) = KL[qθ(z|xi)||p(z|xi)] + ELBO (3)
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ELBO = Eqθ(z|xi)[log pβ(x
i|z)]− KL[qθ(z|xi)||p(z)] (4)

Note that such a modeling assumption allows us to tractably infer the posterior over the latent variable
given the data and allows us to model the generative process as well. Optimizing the ELBO over an
expectation over the observed data is tricky. The usual Monte Carlo estimator for this type of problem
using the log derivative trick (see REINFORCE Sutton et al. [2000]) yields a high variance gradient
estimate resulting in an unstable and tedious learning process and is not useful for practical purposes.
Kingma and Welling [2013] proposed an alternate gradient estimator based on the reparameterization
trick. Essentially, the process of sampling the latent variable z can be interpreted as follows when the
prior over the same is assumed to be a zero-centered unit-gaussian (p(z) = N (0, I)).

z ∼ qφ(z|xi) (5)

is equivalent to
ε ∼ N (0, I) and z = µφ(z) + εσφ(z) (6)

Separating the noise component from the deterministic prediction of the sufficient statistics of the
approximate posterior allows us to propagate gradients backward through the whole stochastic
process. The process described here is only for a gaussian but similar reparameterization tricks can
also be applied for distributions which satisfy certain conjugacy conditions (including the recently
proposed Gumbel-Softmax trick for reparameterizing a categorical distribution on the simplex Jang
et al. [2016]). The usual architectural pipeline for training such a model is demonstrated in Fig. 5.

Extensions to VAE. Since Kingma and Welling [2013] proposed the Stochastic Gradient Variational
Bayes estimator, there has been a significant amount of work in the domain of probabilistic models in
terms of modeling more complex generative processes and observed data regimes due to the inherent
smooth differentiability aspect of the reparameterization trick. Some notable work in this domain
that are applicable in the context of our proposed approach are:

• Conditional Variational Autoencoder. Utilizing the Evidence Lower Bound formula-
tion Sohn et al. [2015] proposed a conditional generative process where ELBO is derived as a
lower bound on the conditional likelihood of one modality given the other, i.e., log p(y|x)
allowing us to learn distributions over structured outputs based on given observations. This
naturally inspires a semantic segmentation baseline that we study in Sec. 6.

• Joint Multimodal Variational Autoencoder. While the cVAE allows us to perform model
conditional generative and inference processes; JMVAE Suzuki et al. [2016] takes it one step
further by assuming to causal relationship between the modalities present. Having a structure
where observations for multiple data modalities are modeled as being generated from a
single latent parent random variable traditionally requires one to perform joint-inference
- estimating the posterior over the latent variable conditioned on all the data modalities.
JMVAE does exactly this except it adds regularization terms that learn to model unimodal
inference under missing data modalities. We study a simplified version of the JMVAE model
(see Sec. 6 in order to limit model capacity and still optimize the ELBO efficiently.

• Joint Models with retro-fitted Unimodal Inference Networks. Vedantam et al. [2017]
recently proposed a joint model where the unimodal inference networks are retro-fitted in the
regular ELBO associated with a joint model giving rise to the TELBO objective in a principled
manner. Such a formulation allows the authors to even perform inference under missing
modes in a data-modality via a product of (gaussian) experts formulation. Our proposed
model for scene understanding is an extension to the TELBO objective without any arbitrary
regularizing terms as in JMVAE.

5 Weakly-Supervised segmentation

Motivation: As we have seen before, the task of semantic segmentation involves labeling each pixel
in the image with its associated label (category name). Training data for this task usually consists of
per pixel annotations which is extremely hard and expensive to obtain. Also training models with full
supervision take tremendous amount of time. In this project, we propose to overcome this requirement
by operating on surrogate localizations obtained from a trained image classification model, without
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Figure 7: Our pipeline for weakly supervised image segmentation.

Figure 8: Our pipeline for weakly supervised image segmentation by refining unary potentials of CRF using SEC

the need for expensive pixel level annotation. By enforcing simple Markovian constraints on noisy
and low resolution pixel-labels, we aim to obtain comparable performance on this task.

Our proposed approach for this task involves utilizing interpretable visualizations obtained from deep
models as weak supervision for training semantic segmentation models. Our proposed approach
involves three primary steps. Firstly, we train a deep classification model on the dataset concerned
via cheap image-level label annotations provided in the dataset. Secondly, we obtain class-level
saliency maps through Grad-CAM which provides low resolution noisy surrogate maps. We then
add a CRF on top to obtain better results. Thirdly, we refine the unary potentials obtained through
Grad-CAM using the approach in SEC Kolesnikov and Lampert [2016], by training a segmentation
model. Following this, we replace the unary potentials in step 2, with refined maps, and thus obtain
significant qualitative and quantitative improvements. We perform several ablation studies and show
results of our experiments on the standard PASCAL VOC 2012 segmentation dataset.

5.1 Training a classification model with image level labels

PASCAL VOC 2012 dataset has images which have multiple categories present. We finetune a simple
image classification model, VGG-16, pretrained on ImageNet. VGG-16 which has 5 convolutional
layers and 2 fully connected layers. We trained this architecture with a sigmoid cross entropy loss.
The output of this network is a probability distribution for each of the 20 classes in the dataset. We
pick a threshold of 0.5 to estimate which classes are present in the image. In the next subsection we
see how we use this classification model to obtain weak surrogate maps which can be used as a seed
for obtaining segmentation masks.

5.2 Obtaining class-saliency maps

We compute the Grad-CAM map for each of the classes obtained from step (1). PASCAL requires us
to get segmentation masks for the background category as well. In order to get an associated saliency
map for the background class, we sum the maps for the present categories, and subtract it from 1.
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Approach PASCAL VOC mIoU

Grad-CAM 26.9
Grad-CAM + CRF 31.2

Grad-CAM + SEC Kolesnikov and Lampert [2016] 44.8
Grad-CAM + SEC Kolesnikov and Lampert [2016] + CRF 50.6

Table 2: mIoU on PASCAL VOC’2012 of our proposed approaches which use weak supervision.

Approach mIoU

Grad-CAM 26.9
Grad-CAM + CRF (only smoothness kernel) 26.9
Grad-CAM + CRF (only appearance kernel) 30.7
Grad-CAM + CRF (smoothness and appearance kernel) 31.2

Table 3: Results with ablations of CRF.

As can be seen in the figure, the Grad-CAM maps obtained are of low resolution (14× 14) compared
to original image which is typically of size (300× 500). Also the obtained maps are highly noisy.
These maps still contain important information which can help localize the class in the image.

5.3 CRF for segmentation

Figure 9: Effect of varying number of long
range connections in the appearance and
smoothness kernel in the CRF. We find a
sweet-spot which gives us the best results.
Red values indicate higher mIoU score and
blue indicates lower mIoU scores. Plot from
Krähenbühl and Koltun [2011]

We use the CRF from Krahenbuhl Krähenbühl and Koltun
[2011] with unary potentials from step (2) and pairwise
potential from image. The downstream CRF is respon-
sible for refining the segmentation predictions based on
an underlying smoothness and appearance variation ker-
nel that helps us prune out extensive modifications along
visual structures such as edges, corners and other such
contextually relevant visual constraints. This results in
segmentations like the one shown in Fig 10 and Fig 11.
Quantitative results can be found in Table 2.

CRF Ablations: We performed the following ablations
of the CRF from Krähenbühl and Koltun [2011].

1. Varying the parameters of long range connections
in the appearance kernel. As described in the prelimi-
nary section, the appearance kernel used by Krähenbühl
and Koltun [2011] is defined by, exp(− |pi−pj |

2

2θ2α
− |Ii−Ij |

2

2θ2β
)

where the first term enforces that nearby pixels should have
similar assignments, and the second term enforces that pixels with similar intensities should have
similar label assignments. θα and θβ denote the weight of long-range connections in the CRF for
pixel location and intensities respectively. In this ablation we vary the weights for the long range
connections for the spatial and the intensity terms. A higher value of θ gives uniform weighting
for nearby and far-away pixels/intensities, and low values of θ gives higher weights to closer pix-
els/intensities. We perform a grid search over θα and θβ and observe similar performance to the plot
shown in Fig. 9.

2. Effect of appearance kernel and smoothness kernel. Here, we study the importance of the
appearance and smoothness kernel. We performed 3 variants - only using appearance kernel, only
using smoothness kernel and using both kernels. We show results in table 3. We find that the
appearance kernel is more important than smoothness kernel and including both kernel gives the best
segmentation performance.
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Figure 10: Weakly supervised image segmentation results

Figure 11: Weakly supervised image segmentation results
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5.4 Refining unary potentials using SEC

Seed Expand and Constrain (SEC) In recent work, Kolesnikov and Lampert [2016] introduce a new
loss function for training weakly-supervised image segmentation models. Their loss function is based
on three principles – 1) to seed with weak localization cues, encouraging the segmentation network to
match these cues, 2) to expand object seeds to regions of reasonable size based on information about
which classes can occur in an image, 3) to constrain segmentations to object boundaries that alleviates
the problem of imprecise boundaries already at training time. They showed that their proposed loss
function, consisting of these three losses, leads to better segmentation.

As can be seen in Fig 7 (left), the labels for foreground classes propagate to background classes, and
in some cases to other foreground classes. This can be attributed to the artifacts introduced when
resizing the low resolution Grad-CAM saliency maps to original image size. We use the segmentation
model from Kolesnikov and Lampert [2016] to refine the unary potentials (Grad-CAM saliency
maps). We then feed the refined unary potentials and the original image to the CRF, to obtain final
segmentation maps. This results in better qualitative and quantitative segmentations as shown in Fig
10 and Fig 11.

6 Towards Scene Understanding via Generative Models

Figure 12: Different data-modalities used in our scene under-
standing pipeline.

As motivated in the introduction, in this
section we try to take the task of seman-
tic segmentation one step further by us-
ing probabilistic models to model the gen-
eral task of scene-understanding. Defined
loosely, scene understanding is a computer
vision task involving perceiving, analyz-
ing and elaborating an interpretation of a
real-time dynamic scene. As mentioned
earlier, we restrict our modeling domains -
data modalities - to that of physical scene
understanding which involves characteriz-
ing the kind and position (space) occupied
by different objects in an image. The data
modalities that we experiment with are -
the image i, the classes present (or absent) c, and the segmentation masks (predicted or otherwise) iS
(see Fig. 12). To avoid notational clutter, in all our formulations of ELBO, we omit the expectation
over the dataset (Ex∼pdata[.]). In our approaches and baselines, the image is encoded by a small
convolutional neural network; the latent variables via two layered multi-layer perceptrons and the
images and segmentation outputs are decoded via small de-convolutional neural networks.

Figure 13: The generative process associated with a
conditional VAE depicted via a plate diagram.

Conditional Variational Auto-encoder (cVAE).
An obvious but naive natural extension of the VAE
that can used to model structured output representa-
tions like segmentation masks given data is the con-
ditional variational autoencoder (cVAE). We treat
this as a baseline approach to judge the complex-
ity of modeling stochastic generative processes for
semantic segmentation. We reason only over the
modalities i and iS . As a representation of i, we use
features extracted from a pretrained deep convolutional network (VGG-16 Simonyan and Zisserman
[2014]). The specific generative process that we are interested in modeling in this case is shown in
Fig. 13. The dotted lines represent the joint inference network qθ(z|i, iS) and the solid lines represent
the joint generator network pβ(iS |i, z), where z is the unobserved latent variable over which we have
an appropriate Gaussian prior p(z). The generative process that has been assumed in this modeling
choice can be summarized as:

z ∼ p(z) and iS ∼ pβ(iS |i, z) (7)
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Under such a process the ELBO can be written as:

ELBO = Eqθ(z|i,iS)[log pβ(iS |i, z)]− KL[qθ(z|i, iS)||p(z)] (8)

The ELBO is optimized via the SGVB as discussed earlier. We use Adam Kingma and Ba [2014] as
our optimizer with hyper-parameters chosen via grid-search. The first term in the objective aims to
maximize the conditional likelihood of the generated segmentations under the chosen variational
family while the second term acts as a regularizer and forces the approximate posterior family to stay
close to the chosen prior.

Figure 14: Qualitative results on segmentation using cVAE.

Figure 15: Poor optimization of the KL[.] resulting
in small coverage of the prior by the variational
family.

In terms of results, the cVAE architecture achieves
a mIoU of 37.75. If we carefully observe the qual-
itative results presented in Fig. 14, we notice that
in addition to poorly modeling the conditional dis-
tribution, the cVAE also spits out spurious class
predictions. We realized that this is indicative of a
pathological problem (see Fig. 15) that the cVAE is
likely to suffer from. While optimizing the ELBO, if
the dynamics associated over gradient updates occur
in a manner such that we are bad at optimizing the
KL[.] term in the objective, the modeled posterior
will be unable to cover the prior family properly.
This results in the variational family occupying only a certain region in the space of prior family and
hence spurious samples of the latent variable z are drawn at test time giving us poor performance and
segmentation predictions.

Joint Generative Models. In order to move towards some notion of completeness in scene-
understanding, we need to be able to perform inference across modalities as well - we should
be able to infer one modality conditioned on the others. While a cVAE is an obvious baseline to
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attempt this, it only supports this inference in one direction. This boils down to having a joint model
that in addition to allowing us to perform efficient joint inference over the latent variable, should also
allow us to perform inference conditioned on a subset of modalities. While existing approaches to
joint models like JMVAE allow us to do that, the inference networks characterizing inference over a
subset of modalities are usually added as regularizers to the ELBO. Thus, there is a need to reason
about unimodal (for instance) inference while performing joint inference itself.

Figure 16: Generative process associated with our proposed
probabilistic model characterized by the plate diagram.

To counter this, we propose the gener-
ative process in Fig. 16 (inspired from
Vedantam et al. [2017]) to model a scene.
Arrows colored blue represent the joint
inference network while ones colored
yellow represent the inference networks
when conditioned on a subset of modal-
ities. Assuming no causal relation, we
have one universal parent continuous un-
observed random variable z that generates
the data modalities. Under such a process,
while it is trivial to derive the ELBO cor-
responding to the joint inference network
(qθ(z|i, iS , c)), to ensure we learn appro-
priate parameters for the inference networks characterized as qν(z|iS) and qρ(z|i, c) we need to
retrofit these networks under the existing generative process. Overall this leads to our objective to
be a combination of three ELBOs as shown below:

ELBOjoint = Eqθ [log pα(i|z)pβ(iS |z)pγ(c|z)]− KL[qθ(z|i, iS , c)||p(z)] (9)

ELBO1 = Eqρ [log pα(i|z)pγ(c|z)]− KL[qρ(z|i, c)||p(z)] (10)

ELBO2 = Eqν [log pβ(iS |z)]− KL[qν(z|iS)||p(z)] (11)

Note that since the generator parameters are shared across the three ELBOs, the subset-inference
networks are implicitly conditioned to operate within the generative processes. This in itself is a
very complicated objective to optimize for but if done efficiently allows us to generate segmentation
outputs conditioned on the inputs, construct scenes conditioned on the segmentation masks and also
to generate datasets in data-starved regime by performing a random walk in the space of z.

In addition to modeling a complicated joint model, we also compare this with a low-capacity model
(*j-VAE) without any networks allowing us to perform inference over a subset of modalities and where
we ignore one modality while performing joint inference. Upon optimizing, loose *j-VAE achieves
an mIoU of 62.25 while our proposed model achieves an mIoU of only 47.23. The qualitative results
depicted in Fig. 17 make for some interesting observations emerging from the sub-par performance
of our retrofitted model relative to *j-VAE. Clearly, unimodal inference comes at a cost. One
obvious conclusion here is that our proposed objective is indeed harder to fit compared to a loose
version of the same under amortized inference settings. The variance in gradients associated with the
generator parameters are significantly magnified due to those terms appearing thrice in the overall
objective under different variational families. We hypothesize that a combination of multi-sample
ELBOs for the retrofitting objectives along with the regular characteristic one for the joint inference
network might be a candidate solution. Another hidden culprit here is the optimizer. It is widely
known that the choice of optimizer under the class of Stochastic Gradient Descent approaches can
lead to vastly different (flat) minimas. Given the complexity of the objective, it is reasonable to
assume that saddle points existing in one of the ELBO terms could play a significant role in deviating
optimization from its ideal course.

7 Logistics

In this section we outline the logistics of our implementation, in particular, the open source libraries
and frameworks that we used, and descriptions of specific aspects of our implementation to enable
reproducibility. As described, we proposed two different approaches for the semantic segmentation
task, and we describe implementation details of each separately. Our source code for each subsection
is provided along with this report.
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Figure 17: Qualitative results of our proposed approach in comparison with the loose approximation involved in
variational family of *j-VAE.

7.1 Weakly Supervised Semantic Segmentation

To implement the weakly supervised semantic segmentation pipeline, we used both various open
source libraries as well as implemented certain components from scratch. As described previously,
we finetuned a VGG-16 model pretrained on ImageNet which was implemented in the Caffe( Jia et al.
[2014]) framework. The produced probability distribution for each of the 20 different classes was
thresholded at 0.5 (as determined by cross validation), and Grad-CAM was run on this network for
each of the 20 classes using our own Caffe implementation, which was coded from scratch.

For the dense CRF we employed to refine the GradCAM maps (5.3), we used the publicly available
code by Krähenbühl and Koltun [2011] – in particular, we used the Python wrapper provided over
the original C++ code. To run the CRF ablations, we modified some of the original wrapper APIs
for our convenience. Finally, for refining the unary potentials obtained by Grad-CAM (5.4), we
used the publicly available code by the authors https://github.com/kolesman/SEC, which also
internally uses the Caffe( Jia et al. [2014]) framework.

7.2 Scene Understanding via Generative Models

To implement the probabilistic models, we used the open-source auto-differentiator framework called
PyTorch Paszke et al. [2017] which has source code written in the programming languages Python
and C++. The model was coded from scratch including ELBO, optimization schemes, hyper-parameter
search, etc. We wrote multi-threaded dataloaders which support loading datapoints over multiple cores
in a machine in parallel. In addition, we also parallelized our model architecture over multi-GPUs to
support faster training.

Overall code structure was written in terms of model classes, dataloader classes and training or
evaluation execution scripts. While the dataloader classes maintain a pointer over the current
instances being loaded over a batch, the model class allows us to maintain an object characterizing
the architecture of the model. Computing loss, generating samples, etc. were written as methods in
the associated model class. The evidence lower bound was implemented based on the closed form
solution associated under gaussian parameterizations of the encoding and decoding processes (see
appendix of Kingma and Welling [2013] for detailed expressions).
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8 Conclusion

To conclude, in this project we explored weak supervision for semantic segmentation - eliminating
the need for pixel-level supervision by using weak localization cues obtained from visual explanation
modalities Selvaraju et al. [2016] associated with deep models which were subsequently refined via
efficient inference over densely connected conditional random fields. Taking the task a step further we
also studied scene understanding via probabilistic generative models, identifying certain pathological
consistencies as well as inconsistencies with the adopted and proposed approaches. In terms of future
work, we plan on integrating both of the avenues explored in this project to model a scene in a joint
fashion and perform inference in a semi-supervised setting. In addition, it might also be interesting
to explore the usage of natural language as data-modality allowing us construct scenes from natural
language descriptions and performing inference in the opposite hop as well.
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