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Abstract

We consider the problem of learning policies for active learning via reinforce-
ment learning for visual recognition tasks. While traditional active learning em-
ploys various heuristics as acquisition functions, we approach this by framing the
streaming active learning setting as a Markov Decision Process. At each timestep
a decision is to be made of whether or not to query an oracle for a label, which are
used to train a model online; an optimal policy leads to training the best classifier
for the downstream task. Such policies can both overcome the need to hand-design
heuristics by learning data-driven acquisition functions, and further can work well
even when training a model from scratch i.e. in a cold-start setting. We learn
such active learning policies for a digit recognition task, and demonstrate strong
performance against baselines. Finally, we study how well such a learned policy
can transfer to a (potentially low resource) target domain.

1 Introduction

In recent times, deep convolutional neural networks have shown great promise for visual recognition
tasks, achieving impressive gains over previous methods on challenging benchmarks [Krizhevsky
et al., 2012, Ren et al., 2015], and receiving widespread adoption in several real-world applica-
tions [He et al., 2017, Chen et al., 2018]. However, such networks have well-documented problems
of being data-hungry [Zhu et al., 2012, Sun et al., 2017], and require large amounts of labeled
examples to train effectively. The real world exhibits significant visual variations, and collecting
annotations at scale for each recognition setting is not a feasible solution.

Active learning [Settles, 2009] seeks to reduce this labeling burden by picking the most valuable
instances in a large unlabeled set to get labeled by an oracle. This field has seen extensive work
and several effective heuristics have been proposed as utility functions, such as picking instances
the model is most uncertain about, or the instance whose label is expected to maximally reduce the
model’s uncertainty about other instances [Bachman et al., 2017]. However, these heuristics have
been found to often learn suboptimal and “myopic” policies that do not generalize across datasets
and domains. In addition, the “expert features” that several of these heuristics rely on, such as
uncertainty and margins, can be uncalibrated when obtained from a model that is being trained via
active learning “from scratch” i.e. in what is described as a cold-start setting. In such scenarios,
more robust strategies are required that can adapt to varying degrees of model calibration.

Recent work [Fang et al., 2017, Konyushkova et al., 2017, Bachman et al., 2017] has shown the
promise of learning end-to-end policies for active learning via meta-learning, that outperform tradi-
tional heuristics on certain tasks by learning acquisition functions from data rather than employing
engineered features. These policies are typically learned using deep reinforcement learning tech-
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niques, such as deep Q-learning or policy gradient methods. Note that such strategies are naturally
amenable to both batch mode and streaming active learning setups.

However, such policy active learning methods have a limitation — since the deep RL methods are
often quite sample inefficient, significant amounts of labeled data are required to learn effective
policies, especially when training a model from scratch. This potentially defeats the purpose of
doing active learning, as if we had large amounts of labeled data for a domain, we wouldn’t need to
do active learning in the first place! The true utility therefore is in learning a transferable policy that
can easily be transferred (potentially via finetuning) to a new, potentially low-resource domain.

Contributions. In this work, we make the following contributions:

1. We study the problem of meta-learning active learning policies for visual recognition tasks,
and study how the performance of such policies compares with traditional active learning
heuristics. We do this by posing the active learning setup as a Markov Decision Process
and use deep reinforcement learning techniques to learn policies end-to-end.

2. Further, we study if we can efficiently transfer such policies across visual domains. Such
effective transfer can be of great practical utility in transferring policies learned on data-rich
visual domains to low-resource domains.

2 Related Work

Active Learning. Many works have tackled the batch-mode active learning problem [Settles, 2009],
where the goal is to optimally query an oracle for labels given a pool of unlabeled examples. In the
streaming active learning setting, the entire pool is not available ahead of time. In both cases, many
heuristics have been designed as acquisition functions, for eg. picking examples the model is most
uncertain about, or that are closest to the margin, or based on density estimation. In our setting, we
focus on the streaming active learning setting and compare how an active learning policy learned
end-to-end via reinforcement learning compares with such heuristics.

Policy Active Learning. Recent work [Fang et al., 2017, Konyushkova et al., 2017, Bachman et al.,
2017] have proposed learning policies for active learning from data, instead of using hand-designed
heuristics. The primary intuition is that different heuristics may be optimal for different situations,
and so learning data-driven acquisition functions might be the best solution. Additionally, many
heuristics that rely on features such as model uncertainty underperform in the cold-start setting, as
an untrained model tends to be uncalibrated. With policy active learning, the policy and model can
co-train and this can help ameliorate the above issue. Finally, policy active learning is amenable to
the streaming active learning setup, where we do not have access to all the data before hand 2, while
most commonly employed heuristics are not. In our work, we focus on a similar setup as [Fang
et al., 2017], but focus on the task of visual recognition (and design state representations conducive
to images), and work with deep neural network as our model architecture (which presents challenges
due to noisy rewards arising from local optimization). Further, we study fransfer of learned policies
across visual domains.

Transferring policies across domains. Some recent work has looked at transferring policies across
domains. Combes et al. [2018] study data augmentation, meta-learning, and adversarial training
approaches to learn transferable, task-agnostic policies. Fang et al. [2017] also look at transfer of
active learning policies for NER to different languages, but make use of pretrained multilingual
embeddings for the same. Similarly, Li et al. [2018] propose a meta-optimization strategy of simu-
lating domain shift during training to learn invariant policies. Pang et al. [2018] propose a multitask
training scheme to learn transferable active learning policies, and share a very similar motivation
with this work — however, they assume access to multiple disjoint datasets, while we focus on low-
resource transfer using only a single pass over the target domain data.

3 Approach

We follow the procedure described in Fang et al. [2017] in large part, with a few modifications.
Given a data-rich source domain D, and an initially untrained model ¢ (parameterized as a convo-

2Note that it is equally applicable to the traditional pool-based setup.
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lutional neural network) and we pose the active learning problem as a Markov Decision Process and
learn a policy 7 as follows:

e State. At each timestep, the state of the MDP is characterized as a concatenation of a
feature representation of the input datapoint z; and the logits obtained from the model ¢
after classifying ;. Specifically, we process the image using a series of convolutional and
pooling layers with ReLU nonlinearities, and concatenate this representation with the logits
obtained from the model 7 after a forward pass of the example x;.

e Action. At each timestep, the policy either chooses whether to request a label for the
current datapoint (a; = 1) or not (a; = 0) as its action. Note that if a label is requested, the
model is trained with a few iterations of gradient descent on the new example 3.

e Reward. The policy 7 is given a reward r(s;_1, a) as the change in accuracy of the model
¢ after action a on a held-out validation set.

e Budget. The policy has a fixed budget B of the number of examples it can get labeled in a
given episode. Once the budget is exhausted, the episode ends and the model is reinitialized
with random weights.

e Learning. We experiment with deep Q-learning [Mnih et al., 2015] for learning the
policy 7, and run the learning algorithm for several episodes. Our policy is parame-
terized as a 3-layer deep neural network that takes in the state representation described
above and maps is to a two-dimensional vector. The DQN is used using stochastic gra-
dient descent with an objective of minimizing the mean square error between the Q-
values predicted by the DQN and the expected values using the Bellman equation as

L(¢) = Egors [(r +ymaxy Q (8',a';di—1) — Q(s,a;qb))ﬂ. We store experiences

(84, a,7, s;+1) in an experience replay buffer and sample minibatches from this buffer while
learning our policy. We also employ an e-greedy strategy to encourage exploration.

Episodic training. The episodic training pipeline that we employ is outlined in Algo.1. Note that
we shuffle the order of data between episodes.

Transfer. We study two modes of transfer. First, we study how well the learned policy directly
transfers to a new domain, i.e. whether the policy implicitly learns domain invariant features. Sec-
ond, we study explict transfer, by adding a simple “finetuning” strategy comprising of a single pass
over our target domain that is used to update the policy.

Algorithm 1 Policy active learning for visual recognition, as proposed in Fang et al. [2017].

1: Input: Data D, Budget B, Replay Buffer M

2: Qutput: Active learning policy m > Run this for a large number of episodes
3: for episode = {1,2,..N} do

4: Initialize ¢ randomly, shuffle D

5 fori € {1,2,..|D|} do
6: Construct state s; from x;
7 a; = argmax Q™ (s;, a)
8: if a; = 1 then > Run few iterations of gradient descent on example
9: Update model ¢ using (x;, y;)
10: r; + Acc(pr) — Ace(pp—1) > Estimate reward from change in validation accuracy.
11: if |D;| = B then
12: Si+1 < Terminate
13: else
14: Construct new state s;41
15: Store (s;,a;,7;, 8;+1) in replay buffer
16: Sample random minibatch from replay buffer M
17: Perform gradient descent step on policy 7 > Train DQN

3We experimented with several strategies to reduce the variance in the reward cause due to noisy local
optimization, details are discussed in Sec. 4



B =10 B =100 B = 1000

Random 31,1292 643+£39 915402
Entropy 341 76.0 91.6
Margin 32.0 63.1 91.5

DON (Ours) 335£83 73113 921+£02

Table 1: Results for approach for varying budgets on MNIST.

4 Results

4.1 Experimental Setup

We present results on the task of digit recognition. Our digit recognition model is parameterized
as a convolutional neural network with two conv-pool-relu blocks followed by two fully connected
layers and a softmax layer. We study the streaming active learning setting, where we do not have
access to future datapoints ahead of time and the model is retrained every time a new label is queried.
We assume that our oracle always produces correct labels.

Datasets. We run experiments on MNIST [LeCun et al., 1998], and study transfer to USPS images.
We create disjoint subsets of the training set of MNIST for the policy learning and policy evaluation
stages, respectively.

Metrics. We employ the visual recognition accuracy on the test split of the target domain(s) for a
given annotation budget as our metric.

Baselines. As baselines, we employ two traditional active learning acquisition functions — entropy
sampling, and margin-based sampling. Entropy or uncertainty sampling picks the example that the
model is most uncertain about, as measured by the entropy of its prediction scores, to be labeled.
Margin-based sampling picks the example with the smallest separation between its top two pre-
dictions to be labeled [Wang and Shang, 2014]. Note that we employ both these approaches in a
streaming setup (i.e. the model is retrained with each new label), and match the evaluation setup to
the DQN evaluation setup exactly. However, these approaches are pool-based by design and access
the entire pool of data, which makes them particularly strong baselines. Finally, we also include a
random sampling baseline.

Hyperparameters. We use a learning rate of 3e-5 and a weight decay of le-4 with the
Adam [Kingma and Ba, 2014] optimizer. We learn our policies for 1000 episodes, and shuffle
the data order between episodes. We also pretrain our model with a small amount of data (100 train
examples) to make sure that we do not start from completely uncalibrated models. We use a learning
rate of le-4, a discounting factor v of 0.99, and a 7 of 1le-3 for the soft update of our DQN policy.

In practice, we found retraining the model with batches of 10 examples instead of a single example
to be critical to make the policy converge. While this increases the difficulty of the credit assign-
ment, we believe it helps significantly reduce the variance of the reward estimate arising from local
optimization via gradient descent on a single example.

4.2 Policy Active Learning on MNIST

In this section, we present results for policy active learning on MNIST alone for varying budgets
and compare that with baselines. Policies are learned using the algorithm described in Algo. 1. The
policy learning and testing is done on disjoint subsets of the MNIST train set, and during learning
rewards are obtained from the MNIST val set. Results are presented in Table 1. Performance
is averaged over 3 runs, with the order being shuffled between runs. We report 95% confidence
intervals. The learning employs an epsilon greedy strategy, and the policy is parameterized as a
DQN with three fully connected layers and ReLU nonlinearities.

As seen in Table 1, we are able to learn good active learning policies on MNIST for a budget of
100, that considerably outperform the margin and random baselines but underperform against the
entropy baseline. However, at a budget of 10, no statistically significant difference is observed from



B =100 B = 1000

Random 81.7+0.8 952+0.1
Entropy 83.3 95.1
Margin 84.9 94.6

DQN (Ours) 843+14 958402
DQN-ft (Ours) 852427  96.0+0.1

Table 2: Results for policy transfer from MNIST to USPS.

Accuracy
Logits only 68.3 £3.7
Pixels only 679+ 1.6

Logits + Pixels (Conv) 73.1 £1.3

Table 3: Results for different ablations for our proposed model for B = 100.

a random policy, most likely due to high-variance in the rewards 4. At B = 1000, the DQN policy
outperforms all baselines. However, diminishing returns are observed from active learning in itself
with the relatively large amount of the data, with the difference observed being rather small.

As a sanity check, we tried to visualize the examples picked and rejected by the policy with the
highest confidence, to interpret trends. However, the qualitative results were difficult to interpret
and we could not see clear trends of what the policy was optimizing for.

4.3 Policy transfer to USPS

Table 2 describes the results of transferring our policies learned on MNIST to USPS, for different
budgets. The policy finetuning happens on the USPS train set, and rewards are obtained from the
USPS val set. Final performance is reported on the USPS test set.

We find that for a budget of 100, our approach outperforms the random and entropy baseline and
is on par with the margin based baselines. Further, finetuning leads to a 1% improvement in mean
accuracy. However, we note that even a random baseline performs quite well and gains are modest,
which potentially points to active learning having limited usefulness in this domain. With a budget
of 1000, we observe similar trends, but the differences are much narrower and likely not statistically
significant.

4.4 Model ablations

In Table 3 we report performance for different ablations of our model that we obtain by varying
our state representation, on the MNIST test set using a budget of 100. Logits only and pixels only
refers to only using flattened vectors of logits and pixels respectively as the state representation.
Finally, our best performing approach is Logits + Pixels (Conv) which uses a convolutional feature
representation of the image concatenated with the prediction logits from the model.

5 Conclusion and Future Work

In this project, we demonstrated how we could learn effective policies for active learning for the
task of visual recognition using deep reinforcement learning. We further studied the transferability
of such learned policies to a low-resource domain, but we did not see promising results on transfer.
Studying ways to explicitly incorporate domain invariance into the policy learning and finetuning
stages would be a natural next step towards resolving this issue.

Many interesting extensions are possible, especially for transfer, that we were unable to experiment
with due to shortage of time. Unsupervised adversarial feature-level adaptation can be employed as

*I also did not spend a lot of time tuning hyperparameters for the B = 10 setting due to lack of time.
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done in Tzeng et al. [2017] and then a policy can be learned on this aligned space, which would
be transferable to the target domain by design. Further, also adding pixel-level adaptation as done
in Hoffman et al. [2017] could lead to further improvements. Finally, experimenting with different
policy parameterizations, including double DQN’s, dueling DQN’s prioritized experience replay, as
well as using policy gradients etc. are interesting alternatives that are worth experimenting with.
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